MENU

E-journal for electrical and electronic engineers
AUTOMATYKA, ELEKTRYKA, ZAKLOCENIA

(AUTOMATICS, ELECTROTECHNICS, DISTURBANCES)

Vol. 3, Nr 2 (8) 2012

Publ. 30.06.2012

Corrosion monitoring by electrochemical noise

s. 87-93 DOI:

Abstract

Some selected problems of various corrosion types detection by electrochemical noise measurements and analysis werepresented. The main advantage of this method are measurements of spontaneous fluctuations without additional external polarization. The method can monitor corrosion without interfering its rate and corrosion type. The proposed method of corrosion rate estimation were presented separately for some practical cases (corrosion of pipes in water supplysystem, corrosion of concrete reinforcement) by applying the prepared measurement system.

Keywords

corrosion, monitoring, electrochemical noise

Fig.

Bilbiography

[1] Dawson J. L.: Electrochemical noise measurements: the definitive in-situ technique for corrosion applications. W: Electrochemical noise
measurements for corrosion applications, (Red. J. R. Kearns, J. R. Scully, P. R .Roberge, D. L. Reichert, J. L. Dawson), Philadelphia: ASTM STP 1277,
1996, s. 3–35.
[2] Montesperelli G., Gusmano G.: The use of electrochemical noise analysis on corroding systems. Fluctuation a. Noise Lett., 2004 Vol. 4, nr 3, s.
L.39–55.
[3] Pourbaix M.: Wykłady z korozji elektrochemicznej. Warszawa: PWN 1978.
[4] Bertocci U., Mullen J. L., Ye Y. X.: Electrochemical noise measurements for the study of localized corrosion and passivity breakdown. (Materiały)
Proc. Passivity of Metals and Semiconductors. May 30-June 3, Bonbanese France, Elsevier Sci. Publ., 1983, s. 229–234.
[5] Smulko J., Darowicki K., Wysocki P.: Digital measurement system for electrochemical noise. Pol. J. Chem., 1998 Vol. 72, nr 7, s. 1237–1241.
[6] Hoja J., Lentka G.: Virtual instrument using bilinear transformation for parameter identification of high impedance objects. Measur. Sci.
Technol., 2003 Vol. 14, nr 5, s. 633–642.
[7] Bruyn H. J.: Current corrosion monitoring trends in the petrochemical industry. Int. J. Pres. Ves. & Piping, 1996 Vol. 66, nr 1–3, s. 293–303.
[8] Cottis R.: Interpretation of electrochemical noise data. Corrosion, 2000 Vol. 57, nr 3, s. 265–285.
[9] Flis J., Dawson J. L., Gill J., Wood G. C.: Impedance and electrochemical noise measurements on iron and iron-carbon alloys in hot caustic
soda. Corr. Sci., 1991 Vol. 32, s. 877–892.
[10] Dawson J. L.: Electrochemical noise measurements: the definitive in-situ technique for corrosion applications. W: Electrochemical noise
measurements for corrosion applications, (Red. J. R. Kearns, J. R. Scully, P. R .Roberge, D. L. Reichert, J. L. Dawson), Philadelphia: ASTM STP 1277,
1996, s. 3–35.
[11] Smulko J.: Problemy pomiarów i analizy szumów elektrochemicznych. Wydawnictwo Politechniki Gdańskiej, Monografie 77, Gdańsk
2006.
[12] Smulko J., Darowicki K., Zieliński A.: Detection of random transients caused by pitting corrosion. Electrochim. Acta, 2002 Vol. 47, nr 8, s.
1297–1303.
[13] Williams D. E., Westcott C., Fleischmann M.: Stochastic models of pitting corrosion of stainless steels. II. Measurement and interpretation of
data at constant potential. J. Electrochem. Soc., 1985 Vol. 132, nr 8, s. 1804–1811.
[14] Mendel J. M.: Tutorial on higher-order statistics (spectra). In signal processing and system theory: Theoretical Results and Some Applications.
(Materiały) Proc. IEEE, Vol. 79, nr 3, March 1991, s. 278–305.
[15] Smulko J., Darowicki K.: Nonlinearity of electrochemical noise caused by pitting corrosion. J. Electroanalyt. Chem., March 27, 2003 Vol. 545, s.
59–63.